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AIIanct-An explicit 3-term asymptotic solution is obtained for the problem for small branch angles.
Comparison with the numerical solution shows that the asymptic formulae are reasonably accurate for
branch anaJes as large as 7'l'.

I. INTRODUCTION
The determination of stress-intensity factors for a crack with an infinitesimal branch at a tip is
important in studying the branching phenomenon, and has been extensively studied by many
researchers (e.g. [1-7]). A discussion of the various approaches may be found in [7]. The result
of the asymptotic analysis carried out in [6] is a single integral equation which enables the direct
evaluation of the stress-intensity factors at the tip of the infinitesimal branch without assigning
a small length for the branch. This integral equation was solved numerically in [7].

The purpose of this paper is to show that the aforementioned integral equation can be
solved by a perturbation procedure, using the branch angle as a small parameter. The result is an
explicit 3-term approximate solution which agree reasonably well with the numerical solution
for branch angles up to 71:'.

2. STATEMENT OF THE PROBLEM

Consider a Z-shaped crack characterized by a main crack length 2a, a branch crack length Ea
(0 < E <C 1), and a branch crack angle a11'. We shall use "a" as a length scale so that the crack
configuration in the dimensionless (Xh x~plane assumes the form depicted in Fig. 1. The
infinite plane is characterized by a shear modulus p. and Poisson's ratio P, and is subjected to a
uniform load applied at infinity. Using a2p. as a force scale, the condition at infinity is

(2.1)

where uafJ are the values of the dimensionless stresses TafJ at infinity.

Fig. I.
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Let the solution near the tips of the Z be described by

I'll + Tn =V(~1Tr) {k.(u, a, E) cos ~- k,f.,u, a, E) sin~} (2.2)

where (r,8) are the near-tip polar coordinates indicated in Fig. 1. Then kl:iu, a, E) are the
stress-intensity factors at the tips of the Z. The limits

are the asymptotic approximations of the true stress-intensity factors k\,2; and the limits

KI.lI(U) = lim kdu, 0, E)
•....0

are just the exact stress-intensity factors associated with the linear crack of length 2.
It was shown in [6] that .

where the complex function I/J(z) is the solution of the integral equation

and the arc C is defined by

(2.3)

(2.4)

(2.5)

(2.6)t

C: z =e l
' (2.7)

For the case of a uni-directional load depicted in Fig. 1 and defined by

Un = U cos2 fJ* 1T, UI2 = U cos fJ*1T sin fJ*1T (2.8)*

(2.6) may be put into the more convenient form

./,( ) = sin a1T 1(0"'2110)1, ( «(2 - l)~ dr
Y' Z 21T e )c«+ a)«(- z) !o +z. (2.9)

Equation (2.9) has been solved numerically and the relevant results may be found in [7]. The
purpose of this paper is to show that for small values of a eqn (2.9) may be solved by a
perturbation procedure. Specifically, a 3-term explicit formula is obtained for the quantity
I/J'(- a) needed in (2.5). It is

.//( ) 1 sin a1T /(0"'2110 )1,( 2a + I 1+ a +' )
Y' -a = ---e ~ n-- '1T

21T 1- a 1- a

+ ei~:1Tf(~2 -4) + .... (2.10)

We shall see in the following section that the form of (2.10) comes out naturally from the
development although it is accurate only to the order of a2

• Substituting (2.10) into (2.5) we
obtain:

tTbe complex z-plane is not the (x .. xz)-plane indicated in Fia. I.
fI'he parameter fJ = 1/2 - fJ· wu used in [1]. For the cue of a crack-parallel shear 1'. set p. = 1/2 and IT COl fJ·fr = l' in all

equations.



Explicit asymptotic solution for the maximum-encJ'IY-release-rate problem

Crack perpendicular Un

I [K ·K.l .(I-a)oI2 -[I sina7T -Itrd( 2a--- 1+1 2J=1 -- e ---e .....--::1
UnV1f I+a 21f I-a

+ In ~ ~: - i7T) + ei~:1f)\;2 -4)J.

Crack-parallel UI2

I [K 'Kl (l-a)al2 _[I+sina1f -Itrd( 2a--- .+1 2J= -- e --e .....--::1UI2V7T I+a 21f I-a

+ In : ~: - i7T) + ei~:7T)2(;2 -4)J.
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(2.11)

(2.12)

Stress-intensity factors computed from these two formulae are tabulated and compared with
the corresponding numerical results [7] in Table I. The comparisons exhibit excellent agreement
for a < 0.2 (36° branch angle), and reasonable agreement can be traced to values of a as large
as 0.4 (7r branch angle).

Let O(u, a) be the line-to-Z energy release rate. It may be shown by using Irwin's
crack-tip-opening~splacement calculation [8] that

where

I
O(u, a) =8(K + 1)[KI

2
(U, a) + Kl(u, a)].

{
3- 411 ,plane stress

K = (3- 11)/0 +II) plane strain.

(2.13)

(2.14)

The energy release rate can also be calculated in terms of the properties of the solution at
infinity. This was done in [6] and the result is

1f 2 (t-a)a( Q+Q)0(u,a)=g(Idl)(uh+ U I2) I+a 1+ I-az

Table 1.

(2.15)

·Crack-Perpendicular a
22

··Crack-Paralle1 a
12

a Nwoerical Solution Eq. (2.11) NuJoerical Solution Eq. (2.12)

1:\ 1:
2 1:\ 1:

2 1:\ 1:2 1:1 1:
2

0.00 1. 0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000
0.02 0.9985 0.0314 0.9985 0.03\4 -0.0941 0.9969 -0.0942 0.9969
0.04 0.9940 0.0625 0.9941 0.0626 -0.1877 0.9877 -0.1877 0.11871
0.06 0.9867 0.0932 0.9867 0.0935 -0.2800 0.9724 -0.2802 0.9724
0.08 0.9766 0.\232 0.9764 0.1239 -0.3707 0.9513 -0.3710 0.9512
0.10 0.9636 0.1523 0.9633 0.1537 -0.4590 0.9245 -0.4596 0.9241
0.12 0.9480 0.\803 0.9473 0.1826 -0.5444 0.8921 -0.5454 0.8914
0.14 0.9298 0.2070 0.9287 0.2105 -0.6265 0.8546 -0.6280 0.8533
0.16 0.9092 0.2323 0.9073 0.2373 . -0.7047 0.8123 -0.7068 0.8100
0.\8 0.8864 0.2559 0.8834 0.2628 -0.7787 0.7655 -0.7814 0.7619
0.20 0.8614 0.2777 0.8571 0.2868 -0.8479 0.7147 -0.8513 0.7094
0.22 0.8346 0.2976 0.8284 0.3092 -0.9121 0.6602 -0.9161 0.6527
0.24 0.8061 0.3155 0.7976 0.3299 -0.9710 0.6026 -0.9754 0.5924
0.26 0.7760 0.3313 0.7648 0.3487 -I. 0240 0.5424 -I. 0289 0.5288
0.28 0.7447 0.3450 0.7302 0.3645 -1.0716 0.4801 -I. 0763 0.4625
0.30 0.7123 0.3565 0.6940 0.3801 -1.1\3\ 0.416\ -1.1173 0.3940
0.32 0.6790 0.3658 0.6563 0.3925 -1.1148 0.3510 -1.1518 0.3237
0.34 0.6451 0.3729 0.6175 0.4026 -1.1171 0.2853 -1.1795 0.2522
0.36 0.6106 0.3778 0.5778 0.4103 -1. 2003 0.2195 -1.2003 0.1802
0.38 0.5760 0.3806 0.5373 0.4157 -1.2170 0.1542 -1.2143 0.1081
0.40 0.5412 0.38\3 0.4964 0.4186 -I. 2276 0.0897 -1.2214 0.0365
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Q I· [.I_() ] sin a1/' ICcr+211°)1.1(,2 - 1*,(') dJ'= 1m z 'I' z - Z =- --e !>.
z__ 21/' c '+a

(2.16)

Substituting (2.5) and (2.14) into (2.13), we find

-- 1 -
""(- a)""(- a) = 1+ 1- a2 (Q + Q).

The quantity Q consistent with the accuracy of (2.10) is

(2.17)

Using (2.10) and (2.18), we find that (2.17) is satisfied to the order of a 2•

3. ASYMPTOTIC SOLUTION

Consider the complex function I/1(z) satisfying the integral equation (2.9). The function is
holomorphic in the whole z-plane cut along the semi-circle C defined by (2.7). The points
z = ± 1 are the images of the physical locations where an E-branch meets the main crack. We
have the following correspondence:

_ 1 {a re-entrant comer if a :!i 0
a regular comer

z = - a a tip of the Z

+ I {a regular comer if a :!i O.
a re-entrant comer

(3.1)

In the neighborhood of z = ± 1, the integral in (2.9) is coupled with the th.s., no matter how
small the parameter a is. This coupling yields the comer behavior discussed in (7J. It may be
interpreted as a kind of boundary-layer expansion in terms of the small parameter a. For
Iz ± II> 0, the contribution of the integral in (2.9) is small if a is assumed to be small. This
suggests that a regular perturbation procedure may be introduced to solve (2.9).

For convenience we introduce a small parameter 8 = sin a1rl21/', and seek a solution of (2.9)
in the form

.,
"'(z) =2: 8"I/III(z. a).

11-0

Substituting (3.2) into (2.9), we find that "'(z) may be written as

I/1(z)= 2: 8"~,,(z,a)+elccr+211°)or')' 8"~,,(z,a)
even ~

where

t/JrI...z,a)=z

and

~.+I(Z, a) = { (f - 1)+:'<' a) de.
le «(+a)(l'-z)

Thus, the functions ~. can all in principle be determined.

(3.2)

(3.3)

(3.4)

(3.5)
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Integrating (3.5) by parts, we get

I
~+I(Z, a) = -+ [/"+1(Z' a) - 1"+1(- a, a)lz a

where

The two quantities l/l(- a) and Q are just

l/I'(- a) = l+ '5' 8"~:'<- a, a) +e j
(a+2"oh

r '5' ~"~~(- a, a)
t.t~ ~

Q = '5' ~"Q,,(a) +e j
(a+2#!°)1l' '5' ~"Q,,(a)

f.t.6 ~

where

~~(-a, a) = ~f:(-a, a)

Q,,(a) = Ie ~"-I«(, a) d( - f.(- a, a).

The function ft(z, a) can be integrated straightforwardly. It is

z-I
ft(z, a) = (z2-1) In z+ I +2z

S6S

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

where the logarithmic term is defined in accordance with the cut along C. Equations (3.10)
(3.12) yield

(3.13)

(3.14)

Unfortunately, the appearance of the logarithmic term in (3.12) makes the explicit evaluation
of the higher order terms impossible. However, if the purpose is to determine l/I'(- a) and Q to
the order of a 2

, only the values of ~i(- a, a)la-o and (h(a)la-o are needed. These two
quantities can be explicitly evaluated. We have

~i(0,0)=!fi(0,0)= ( ~dz-3 ( ~dz
2 Jc z Jc z

(h(0) = ( ~I(Z, 0) dz + (~ dz.Jc Jc z

For z on C, (3.6) and (3.12) imply that

Z2 - I ( z - I .) ;11'
=-- In---211'I +2--.

z z+1 z

(3.15)

(3.16)

(3.17)
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Substituting (3.17) into (3.15) and (3.16), and integrating we obtain

1T
2

4>2<0, 0) = "2 - 4,

This concludes the derivation of (2.10) and (2.23).

QiO) = 1T
2

- 4. (3.18)
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